BALAGARH BIJOY KRISHNA MAHAVIDYALAYA

Department of Mathematics

Syllabus and Course Module for odd semester 2022-23

COURSE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER'S NAME	NO OF CLASSES	Curriculu m Delivery
BMH1CC01	Calculus, Geometr y & Different ial Equation s	Unit -1: Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type sin ax b e x + , cos ax b e x + , (ax+b)n sinx, (ax+b)n cosx, concavity and inflection points, envelopes, asymptotes, curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences Unit-2 : Reduction formulae, derivations and illustrations of reduction formulae for the integration of sin nx, cosnx, tan nx, sec nx, (log x)n , sinn xsinmx, parametric equations, parametrizing a curve, arc length, arc length of parametric curves, area of surface of revolution. Techniques of sketching conics. Unit -3: Reflection properties of conics, translation and rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics. Spheres.Cylindrical surfaces. Central conicoids, garaboloids, plane sections of conicoids, Generating lines, classification of quadrics, Illustrations of	Sanjukta Das	60	Lecture Tutorial Assignment: 01 Class test- 01 PPT-01

1st SEMESTER (HONOURS)

graphing standard quadric surfaces like cone, ellipsoid. Unit – 4: Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation.Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.		
---	--	--

COURSE	COURSE	SUBJECT TOPICS	TEACHER'S	NO. OF	Curriculum
CODE	NAME		NAME	CLASSES	Delivery
BMH1CC02	Algebra	 Unit -1 :Polar representation of complex numbers, n-th roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients,Transformation of equation,Descartes rule of signs, Cubic and biquadratic equations, reciprocal equation,Strum's theoremInequality: The inequality involving AM≥GM≥HM, Cauchy-Schwartz inequality Of a Set. Well-ordering property of positive integers, Division algorithm, Divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.1 Unit -3:Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. Unit 4:Introduction to linear transformation, inverse of a matrix, characterizations of invertible matrices. Vector spaces, Subspaces of Rn , dimension of subspaces of Rn , rank of a matrix, Eigen values, Eigen Vectors and Characteristic Equation of a matrix 		60	Lecture, Tutorial, Class Test- 01 PPT-02 Remedial Class-02

1st SEMESTER (GENERAL)

COURSE	COURSE	SUBJECT TOPICS	TEACHER'S	NO. OF	Curriculum
CODE	NAME		NAME	CLASSES	Delivery
BMG1CC1A	Differential Calculus	1.LIMIT .CONTINUITY,SUCCESSIVE DIFFERENTIATION ,LEIBNITZ'S THEOREM,PARTIAL DIFFERENTIAL EQUATION,EULER'S THEOREM ON HOMOGENOUS FUNCTIONS 2.TANGENT, NORMAL, CURVATURE,ASYMPTOTES,S INGULAR POINTS TRACING OF CURVES AND PARAMETRISENTATION OF CURVES POLAR COORDINATES 3.ROLLE'S THEOREM,MEAN VALUE YHEOREM,TAYLOR'S THEOREM,TAYLORS SERIES, MACLAURIN'S SERIES	Dr. Biswajit Paul	60	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class- 01

YOY KRISHNA N

3rd SEMESTER (HONOURS)

COURSE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER' S NAME	NO. OF CLASSES	Curriculum Delivery
BMH3CC0	Theory of Real Functions & Introduction to Metric Space	Unit -1:Limits of functions ($\varepsilon - \delta$ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non- uniform continuity criteria, theorems on uniform continuity. Unit -2 :Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum, Rolle's theorem. Mean value theorem. Applications of mean value theorem to inequalities and approximation of polynomials, Application of differential calculus : Curvature Unit-3:Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $ln(1 + x)$, 1/ax+b and $(1 + x)n$. Application of Taylor's theorem to inequalities. Unit-4 :Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces	Papia Ghosh	60	Lecture, Tutorial, Class Test- 01 PPT-02 Remedial Class-02

COURSE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER' S NAME	NO. OF CLASSES	Curriculum Delivery
BMH3CC0 6	Group Theory–I	Unit-1 :Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups Unit-2:Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups Unit-3 :Properties of cyclic groups, classification of subgroups of cyclic groups, Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theoremUnit-4: External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit-5: Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms First, Second and Third isomorphism theorems	Das	60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01

COURSE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER' S NAME	NO. OF CLASSE S	Curriculum Delivery
BMH3CC07	Numerical Methods & Numerical Methods Lab	Unit-1: Algorithms, Convergence, Errors: Relative, Absolute. Round off, Truncation. Unit-2 : Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regulafalsi method, fixed point iteration, Newton-Raphson method. Rate of convergence of these methods. Unit -3 : System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis, LU Decomposition. Unit- 4: Interpolation: Lagrange and Newton's methods, Error bounds, Finite difference operators. Gregory forward and backward difference interpolations. Numerical differentiation: Methods based on interpolations, methods based on finite differences. Unit – 5 : Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd rule, Simpsons 3/8th rule, Weddle's rule, Boole's rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss quadrature formula. The algebraic eigenvalue problem: Power method. Unit – 6: Ordinary Differential Equations: The method of successive approximations, Euler's method, the modified Euler method, Runge-Kutta methods of orders two and four.	Dr. Biswajit Paul	60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01

COUR SE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER' S NAME	NO. OF CLASSES	Curriculum Delivery
BMH3S EC11	Logic and Sets	Unit 1 : Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations Unit 2 : Sets, subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set. Unit 3 : Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections. Relation: Product set. Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations.	Dr. Biswajit Paul	40	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class-01

ROV KRISHNA IN

3rd SEMESTER (GENERAL)

COURSE	COURSE	SUBJECT TOPICS	TEACHER'S	NO. OF	Curriculum
CODE	NAME		NAME	CLASSES	Delivery
BMG4CC1C	Algebra	FINITE AND INFINITE SETS, COUNTABLE AND UNCOUNTABLE SETS, REAL LINE, BOUNDED SETS, SUPREMA INFIMA, COMPLETENESS PROPERTY, ARCHIMEDEAN PROPERTY, INTERVALS, CLU STER POINTS, BOLZANO WEIERSTRASS THEOREM REAL SEQUENCE, BOUNDED SEQUENCE, CAUCHY CONVERGENCE CRITERION FOR SEQUENCE, CAUCHY'S THEOREM ON LIMITS, MONOTONE SEQUENCE INFINITE SERIES, CAUCHY CONVERGENCE CRITERION FOR SERIES, GEOMETRIC SERIES, GEOMETRIC SERIES, COMPARISON TEST, ROOT TEST, RATIO TEST, ALTERNATING TEST, LEIBNITZ'S TEST, ABSOLUTE AND CONVERGENCE SEQUENCE AND SERIES OF FUNCTIONS, POINTWISE AND UNIFORM CONVERGENCE, Mn TEST, M TEST, POWER SERIES RADIUS OF CONVERGENCE	Dr. Biswajit Paul	60	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class-01

5th SEMESTER (HONOURS)

COURSE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER'S NAME	NO. OF CLASSE S	Curriculum Delivery
BMH5CC11	Partial Differential Equations and Applications	Unit 1: Partial Differential Equations – Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations. Canonical Forms of First-order Linear Equations. Method of Separation of Variables for solving first order partial differential equations. Unit 2: Derivation of Heat equation, Wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic, elliptic. Reduction of second order Linear Equations to canonical forms. Unit 3: The Cauchy problem of 2nd order partial differential equation, Cauchy-Kowalewskaya theorem, Cauchy problem of an infinite string, Initial and Boundary Value Problems. Semi-Infinite String with a fixed end, SemiInfinite String with a Free end. Equations with non-homogeneous boundary conditions. Non- Homogeneous Wave Equation. Method of separation of variables: Solving the Vibrating String Problem. Solving the Heat Conduction problem	Papia Ghosh	60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01

COURS E CODE	COURSE NAME	SUBJECT TOPICS	TEACHER' S NAME	NO. OF CLASSES	Curriculum Delivery
BMH5CC12		Unit 1 : Co-planar forces. Astatic equilibrium. Friction. Equilibrium of a particle on a rough curve. Virtual work. Forces in three dimensions. General conditions of equilibrium. Centre of gravity for different bodies. Stable and unstable equilibrium, equilibrium of flexible string Unit 2 : Simple harmonic motion, Damped and forced vibrations, Components of velocity and acceleration, Equations of motion referred to a set of rotating axes. Motion of a projectile in a resisting medium. Motion of a particle under central force, Keplar's laws of motion, Motion under the inverse square law, Stability of nearly circular orbits, Slightly disturbed orbits, Motion of artificial satellites. Varying mass, constrained, Motion of a particle in three dimensions. Motion on a smooth sphere, cone, and on any surface of revolution Unit 3 : Degrees of freedom, Moments and products of inertia, Momental Ellipsoid, Principal axes, D'Alembert's Principle, Motion about a fixed axis, Compound pendulum, Motion of a system of particles, Motion of a rigid body in two dimensions under finite and impulsive forces, Conservation of momentum and energy		60	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class-01

COURSE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER' S NAME	NO. OF CLASSES	Curriculum Delivery
BMH5DSE11	Linear Programmin g	Unit 1 : Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two-phase method. Big-M method and their comparison Unit 2 : Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual, Dual Simplex method. Unit 3 : Transportation problem and its mathematical formulation, northwest-corner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem, Travelling salesman problem Unit 4 : Game theory: Formulation of two person zero sum games, solving two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	Dr. Biswajit Paul	60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01
BMH5DSE21	Probability and Statistics	Unit 1 : Sample space, probability		60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01

of function of two random variables,
conditional expectations, independent
random variables, bivariate normal
distribution, correlation coefficient, joint
moment generating function (jmgf) and
calculation of covariance (from jmgf),
linear regression for two variables
Unit 3 : Chebyshev's inequality,
statement and interpretation of (weak)
law of large numbers and strong law of
large numbers. Central Limit theorem for
independent and identically distributed
random variables with finite variance,
Markov Chains, Chapman-Kolmogorov
equations, classification of states

Syllabus and Course Module for even semester 2022-23

2nd SEMESTER (HONOURS)

COURSE	COURS	SUBJECT TOPICS	TEACHER	NO OF	Curricu
CODE	Ε		'S	CLASSES	lum
	NAME		NAME		Delivery
CODE BMH2CC03		Unit-1:1.Review of Algebraic and Order Properties of R2.\$\varepsilon-neighbourhood of a point in R3.Idea of countable sets, 		CLASSES 15	
		 Isolated points, Open set, closed set, derived set 9. Illustrations of Bolzano- Weierstrass theorem for sets 10. Compact sets in R, Heine-Borel Theorem 	AL AND		

Unit-2	:	Papia Ghosh	45	Lecture
1.	Sequences, Bounded	r		
	sequence, Convergent			Tutorial
	sequence, Limit of a			
	sequence, lim inf, lim			Assignmen
	sup			4 01
2.	Limit Theorems			t: 01
3.	Monotone Sequences			
	Monotone Convergence			
	Theorem			Class test-
4.	Subsequences, Divergence			
	Criteria.			01
5.	Monotone Subsequence			
	Theorem (statement			PPT-01
	only)			
6.	Bolzano Weierstrass Theorem			
	for Sequences. Cauchy			
	sequence, Cauchy's			
	Convergence Criterion			
Unit-3	:			
1.	Infinite series, convergence			
	and divergence of infinite			
	series, Cauchy Criterion			
2.	Tests for convergence:			
	Comparison test, Limit			
	Comparison test, Ratio Test,			
	Cauchy's nth root test,			
	Integral test.			
3.	Alternating series, Leibniz			
	test. Absolute and Conditional			
	convergence.			

COURS E CODE	COURSE NAME	SUBJECT TOPICS	TEACHER'S NAME	NO. OF CLASSE S	Curriculu m Delivery
BMH2CC04	Differential Equation and Vector Calculus	Differential Equations : Unit-1: 1. Lipschitz condition and Picard's Theorem (Statement only) 2. General solution of homogeneous equation of second order, principle of super position for homogeneous equation 3. Wronskian: its properties and applications 4. Linear homogeneous and non- homogeneous equation of higher order with constant coefficients 5. Euler's equation 6. Method of undetermined coefficients 7. Method of variation of parameters. Unit -2: 1. Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients 2. Basic Theory of linear systems with constant coefficients: Two Equations in two unknown functions.	Dr. Biswajit Paul	30	Lecture, Tutorial, Class Test-01 PPT-02 Remedial Class-02
		Vector Calculus : Unit-3: 1. Equilibrium points, Interpretation of the phase plane 2. Power series solution of a differential equation about an ordinary point 3. Solution about a regular singular point.	Dr. Biswajit Paul	30	

<u>4</u>: Triple product, introduction to vector functions, operations with vector-valued functions Limits and continuity of	
vector functions, differentiation and integration of vector functions	

2nd SEMESTER (GENERAL)

COURS E	COURSE NAME	SUBJECT TOPICS	TEACHER' S	NO. OF CLASS	Curriculum Delivery
CODE			NAME	ES	
BMG2CC1B	Differentia l Equations	 First order exact differential equations Integrating factors, rules to find integrating factors First order higher degree equations solvable for x,y,p Methods for solving higher order differential equations Basic theory of linear differential equations Wronskian and its properties Solving a differential equation by reducing its order. Order and degree of partial differential equations. Concept of linear and non- linear partial differential equations. Formation of first-order partial differential equations. Linear partial differential equations of the first order. Lagrange's method. 	Papia Ghosh	20	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class- 01
		11. Charpit's method 1. Linear homogeneous	Sanjukta Das	20	Lecture, Tutorial, Class
		equations with constant coefficients.Linear non- homogeneous			Test-01 PPT-01
		equations 2. The method of variation of			Remedial Class-
		 parameters 3. The Cauchy-Euler equations Simultaneous differential equations 4. Total differential equations. 			01

	5. Classification of 2 nd order partial differential equations into elliptic, parabolic, and hyperbolic illustrations only				
--	---	--	--	--	--

COUR	COURSE	SUBJECT TOPICS	TEACHE	NO. OF	Curriculu
SE CODE	NAME		R'S NAME	CLASS ES	m Delivery
BMH4C C08	Riemann Integration and Series of Functions	 <u>Unit -1</u>: 1. Riemann integration: inequalities of upper and lower sums 2. Darbaux integration, Darbaux theorem, Riemann conditions of integrability 3. Riemann sum and definition of Riemann integral through Riemann sums, the equivalence of two Definitions. 4. Riemann integrability of monotone and continuous functions 5. Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. 6. Intermediate Value theorem for Integrals 7. Fundamental theorem of 	Dr. Biswaj it Paul	60	Lecture, Tutorial, Class Test-01 PPT-02 Remedial Class-02
		 7. Fundamental theorem of Integral Calculus <u>Unit-2</u>: Improper integrals Convergence of Beta and Gamma functions. <u>Unit-3</u>: Pointwise and uniform 			
		 convergence of sequence of functions. 2. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. 3. Series of functions, Theorems 			
		on the continuity andderivability of the sum functionof a series of functions4. Cauchy criterion for uniform			
		convergence and Weierstrass M-Test. <u>Unit 4</u> : 1. Fourier series: Definition of Fourier coefficients and series			
		 Riemann- Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition. 			

4th SEMESTER (HONOURS)

	Examples of Fourier]
	expansions and summation		
	results for series.		
<u>Unit 5</u> :			
1.	Power series, radius of		
	convergence, Cauchy		
	Hadamard Theorem.		
2.	Differentiation and integration of		
	power series; Abel's Theorem;		
	Weierstrass Approximation		
	Theorem.		

COUR SE CODE	COURSE NAME	SUBJECT TOPICS	TEACHE R'S NAME	NO. OF CLASS ES	Curriculu m Delivery
BMH4C C09	Multivariate Calculus	 Unit -1: Functions of several variables, limit and continuity of functions of n variables Partial differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters Directional derivatives, the gradient, Jacobian, maximal and normal property of gradient, tangent planes Extrema of functions of n variables with necessary and sufficient conditions Method of Lagrange multipliers. Unit-2: Double integration over rectangular region, double integration over non- rectangular region, double integration over non- rectangular region Double integrals in polar co- ordinates, Triple integrals Triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical coordinates. Change of variables in double integrals and triple integrals. Unit-3: Vector operators, Gradient of a scalar function, directional derivatives Definition of vector field, divergence and curl. Line integrals, Fundamental theorem for line integrals, conservative vector fields Application of line integral to Workdone. 	Papia Ghosh	60	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class-01
		1. Green's theorem, surface			

s 2. S	ntegrals, integrals over parametrically defined urfaces. Stoke's theorem 'he Divergence theorem.		

COURS E CODE	COURSE NAME	SUBJECT TOPICS	TEACHE R'S NAME	NO. OF CLASS ES	Curriculum Delivery
BMH4CC 10	Ring Theory and Linear Algebra I	 Unit -1 : Definition and examples of rings, properties of rings Subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals. Unit-2 : Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients. Unit-3 : Vector spaces, subspaces, algebra of subspaces, quotient spaces Linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces, extension, deletion and replacement theorems. Unit 4: Linear transformations, null space, range, rank and nullity of a linear transformation Matrix representation of a linear transformations Isomorphism, Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix. 	Sanjukta Das	60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01

CO URS E CO DE	COURSE NAME	SUBJECT TOPICS	TEACHE R'S NAME	NO. OF CLASSE S	Curriculum Delivery
BMH 4SEC 21	Graph Theory	 <u>Unit -1</u>: Definition, examples and basic properties of graphs Pseudo graphs, complete graphs, bi-partite graphs isomorphism of graphs. <u>Unit-2</u>: Eulerian circuits, Eulerian graph, semi-Eulerian graph and theorems Hamiltonian cycles and theorems Representation of a graph by a matrix, the adjacency matrix, incidence matrix, weighted graph 	Dr. Biswajit Paul	40	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class-01
	BALL	 <u>Unit-3</u>: 1. Travelling salesman's problem, shortest path 2. Tree and their properties, spanning tree 3. Dijkstra's algorithm 4. Warshall algorithm 	- WINI		

PLOY KRISHNP HIP

4th SEMESTER (GENERAL)

COUR SE CODE	COURSE NAME	SUBJECT TOPICS	TEACHER'S NAME	NO. OF CLASSES	Curriculum Delivery
BMG4CC1 D	Algebra	 Definition and examples of group Examples of abelian and non- abelian groups The group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n Cyclic group from number system Complex roots of unity Circle group General linear group <i>GLn(R)</i> Groups of symmetries of (i) an isosceles triangle (ii) an equilateral triangle, (iii) a rectangle, and (iv) square The permutation groups in n 	Dr. Biswajit Paul	40	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01
	- BALL	 Group of quaternions Subgroups Cyclic subgroups Cyclic subgroups The concept of a subgroup generated by a subset and the commutator subgroup of the group Examples of subgroups including the center of a group Cosets index of the subgroup Lagrange's theorem Order of an element Normal subgroups: their definitions, examples, and characterization Quotient group Definition and examples of 	Dr. Biswajit Paul		
	(Chillin	 rings 2. Examples of commutative and non-commutative rings 3. Rings from the number system 	Paul		

 4. Zn the ring of integer modulo n 5. Ring of real quaternions 		
 Rings of matrices Polynomial rings and rings of continuous functions 	Dr. Biswajit Paul	
 Subrings and ideals Integral domains and fields 		
 4. Examples of fields: Zp, Q, ℝ, C. 5. Field of rational functions. 		

6th SEMESTER (HONOURS)

COUR	COURSE	SUBJECT TOPICS	TEACHER'	NO.	Curriculum
SE	NAME		S	OF	Delivery
COD			NAME	CLASS	
E				ES	
BMH6CC1	Metric	Metric Spaces:	Dr. Biswajit	60	Lecture,
3	Spaces and	<u>Unit 1</u> :	Paul		
	Complex	1. Metric spaces:			Tutorial,
	Analysis	Sequences in Metric	1 C - 1		Class
	100 C	Spaces 2. Cauchy sequences.			Class
					Test-01
8	100	3. Complete Metric Spaces			
	1.5	4. Cantor's theorem.			PPT-01
	1 5 1	<u>Unit 2</u> :			
	18.1	1. Continuous mappings,			Remedial
		sequential criterion and other characterizations of			
		continuity			Class-01
		2. Uniform continuity			
1.11		3. Connectedness,	Sector Sector		
		connected subsets of R.	1		
	and the second second	4. Compactness: Sequential	1.2.2		
	the local division of the	compactness, Heine-Borel	100 C		
	-	property			
	A Contraction	5. Totally bounded	and the second		
	G	spaces, finite	S. 1		
	12.1	intersection property			
		6. Continuous functions on			
		compact sets.	100		
	01	7. Homeomorphism			
		8. Contraction mappings			
		9. Banach Fixed point			
	100 C	Theorem and its	3-03		

		application to ordinary		
		differential equation.		
	Commle	. An alugia		
		<u>x Analysis:</u>		
	<u>Unit 3</u> :			
	1.	Limits, Limits involving		
		the point at infinity,		
		continuity.		
	2.	Properties of complex		
		numbers, regions in the		
		complex plane, functions of		
		complex variable,		
		mappings.		
	3.	Derivatives, differentiation		
		formulas, Cauchy-Riemann		
		equations, sufficient		
		conditions for		
	TI:4 4	differentiability.		
	<u>Unit 4</u> :			
	1.	Analytic functions,		
		examples of analytic		
		functions, exponential		
		function, Logarithmic		
		function, trigonometric		
		function, derivatives of		
		functions, and definite		
		integrals of functions.		
	2.	Contours, Contour		
	۷.	integrals and its examples,		
		upper bounds for moduli		
	-	of contour integrals.		
	3.	Cauchy- Goursat		
		theorem, Cauchy		
		integral formula.		
	<u>Unit 5</u> :			
	1.	Liouville's theorem and the		
		fundamental theorem of		
		algebra.		
	2.	Convergence of sequences		

:	and series 3. Taylor series and its exampleS Unit 6 : 1. Laurent series and its examples 2. Absolute and uniform convergence of power series.		

COUR	COURS	SUBJECT TOPICS	TEACHE	NO. OF	Curriculum
SE COD E	E NAME		R'S NAME	CLASSES	Delivery
BMH6CC 14	Ring Theory and Linear Algebra II	 Unit 1 : Polynomial rings over commutative rings, division algorithm and consequences Principal ideal domains, factorization of polynomials, reducibility tests, Eisenstein criterion and unique factorization in Z[x]. Divisibility in integral domains, irreducible, primes, unique factorization domains Euclidean domains. Unit 2 : Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator Diagonalizabilit y, invariant subspaces Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms. Unit 3 : Inner product spaces and norms Gram-Schmidt orthogonal complements Bessel's inequality, the adjoint of a linear operator Least Squares Approximation, minimal solutions to systems of linear equations Normal and self-adjoint 	Sanjukta Das	60	Lecture, Tutorial, Class Test- 01 PPT-01 Remedial Class-01

operators 6. Orthogonal projections and Spectral theorem.		

COURS E CODE	COURS E NAME	SUBJECT TOPICS	TEACHE R'S NAME	NO. OF CLASSES	Curriculu m Delivery
BMH6DSE 43	Mechanic s II	 Unit 1 : Interpretation of Newton's laws of motion Galilean transformation Concept of absolute length and time Limitations of Newton's laws in solving problems. Unit 2 : Equilibrium of fluid in a given field of force Pressure in a heavy homogeneous liquid Equilibrium of floating bodies Isothermal and adiabatic changes in Gases Convective equilibrium Stress in continuum body Stress quadric. Unit 3 : Constraints and their classifications Lagrange's equation of motion for holonomic system Gibbs-Appell's principle of least constraint Work energy relation for constraint forces of shielding friction. 	Pap ia Gho sh	60	Lecture, Tutorial, Class Test-01 PPT-01 Remedial Class-01
BMH6PW0 1	Project Work		Papia Ghosh	60	Lecture, Tutorial, Class Test-01

		PPT-01
		Remedial
		Class-01